Surface passivation of silicon solar cells using plasma-enhanced chemical-vapour-deposited SiN films and thin thermal SiO2/plasma SiN stacks

نویسندگان

  • Jan Schmidt
  • Mark Kerr
  • Andrés Cuevas
چکیده

Two different techniques for the electronic surface passivation of silicon solar cells, the plasma-enhanced chemical vapour deposition of silicon nitride (SiN) and the fabrication of thin thermal silicon oxide/plasma SiN stack structures, are investigated. It is demonstrated that, despite their low thermal budget, both techniques are capable of giving an outstanding surface passivation quality on the low-resistivity (∼1 cm) p-Si base as well as on n+-diffused solar cell emitters with the oxide/nitride stacks showing a much better thermal stability. Both techniques are then applied to fabricate frontand rear-passivated silicon solar cells. Open-circuit voltages in the vicinity of 670 mV are obtained with both passivation techniques on float-zone single-crystalline silicon wafers, demonstrating the outstanding surface passivation quality of the applied passivation schemes on real devices. All-SiN passivated multicrystalline silicon solar cells achieve an open-circuit voltage of 655 mV, which is amongst the highest open-circuit voltages attained on this kind of substrate material. The high open-circuit voltage of the multicrystalline silicon solar cells results not only from the excellent degree of surface passivation but also from the ability of the cell fabrication to maintain a relatively high bulk lifetime (>20 μs) due to the low thermal budget of the surface passivation process.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparison of Front and Back Surface Passivation Schemes for Silicon Solar Cells

This work presents a comprehensive study on fast, low-cost methods for the electronic passivation of the phosphorus-diffused front surface and the non-diffused l'-type rear surface of crystalline Si solar cells. Titanium dioxide is compared with rapidly-grown thermal oxide (RTO) and PECVD silicon nitrides from three different laboratories. Double layers of RTO and Ti02 or SiN are also investiga...

متن کامل

Surface, Emitter and Bulk Recombination in Silicon and Development of Silicon Nitride Passivated Solar Cells

Recombination within the bulk and at the surfaces of crystalline silicon has been investigated in this thesis. Special attention has been paid to the surface passivation achievable with plasma enhanced chemical vapour deposited (PECVD) silicon nitride (SiN) films due to their potential for widespread use in silicon solar cells. The passivation obtained with thermally grown silicon oxide (SiO2) ...

متن کامل

Plasma Enhanced Chemical Vapor Deposited (Pecvd) Silicon-Rich-Nitride Thin Films For Improving Silicon Solar Cells Efficiency

Silicon-rich-nitride (SRN) films were deposited by plasma enhanced chemical vapour deposition (PECVD) by changing the silane and ammonia flow rates. These films were thermally annealed for precipitation of silicon nanocrystals. Measurements of refractive indices and FTIR absorption spectra of these films indicated increase in the silicon content. Thermally annealed SRN films exhibited photolumi...

متن کامل

Atomic Layer Deposition TiO2 Films and TiO2/SiNx Stacks Applied for Silicon Solar Cells

Titanium oxide (TiO2) films and TiO2/SiNx stacks have potential in surface passivation, anti-reflection coatings and carrier-selective contact layers for crystalline Si solar cells. A Si wafer, deposited with 8-nm-thick TiO2 film by atomic layer deposition, has a surface recombination velocity as low as 14.93 cm/s at the injection level of 1.0 × 1015 cm−3. However, the performance of silicon su...

متن کامل

EFFECTIVE PASSIVATION OF THE LOW RESISTIVITY SILICON SllRFACE BY A RAPID THERMAL OXIDE/PECVD SILICON NITRIDE STACK AND ITS APPLICATION TO PASSIVATED REAR AND BIFACIAL SI SOLAR CELLS

A novel stack passivation scheme, in which plasma silicon nitride (SiN) is stacked on top of a rapid thennal SiO? (RTO) layer, is developed to attain a surface recombination velocity (S) approaching 10 em/s at the L3 O-cm p-typc (l00) silicon surfaee_ Such low S is achieved by the stack cven when the RTO and SiN films "I<ilvldllally yield considerably poorer surface passivation. Critical to ach...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001